Problem Example

A bead lies on a frictionless hoop of radius R that rotates around a vertical diameter with constant angular frequency ω, as shown below.

What should ω be so that the bead maintains the same position on the hoop, at an angle β with respect to the vertical?

Solution: The hoop is rotating at a constant angular frequency ω. The bead is traveling in a circle perpendicular to the hoop with radius $R \sin \beta$ as shown in figures.
We know for general motion in polar coordinates

\[\mathbf{a} = \left(\ddot{r} - r\dot{\theta}^2 \right) \mathbf{\hat{r}} - \left(r\ddot{\theta} + 2\dot{r}\dot{\theta} \right) \mathbf{\hat{\theta}} \]

(1)

We also know \(\dot{\theta} = \omega \) and \(\ddot{\theta} = \dot{\omega} = 0 \) since \(\omega \) is constant.